Fuzzy Surfaces of Genus Zero
نویسنده
چکیده
A fuzzy version of the ordinary round 2-sphere has been constructed with an invariant curvature. We here consider linear connections on arbitrary fuzzy surfaces of genus zero. We shall find as before that they are more or less rigidly dependent on the differential calculus used but that a large number of the latter can be constructed which are not covariant under the action of the rotation group. For technical reasons we have been forced to limit our considerations to fuzzy surfaces which are small perturbations of the fuzzy sphere.
منابع مشابه
Triunduloids: Embedded Constant Mean Curvature Surfaces with Three Ends and Genus Zero
In 1841, Delaunay constructed the embedded surfaces of revolution with constant mean curvature (CMC); these unduloids have genus zero and are now known to be the only embedded CMC surfaces with two ends and finite genus. Here, we construct the complete family of embedded CMC surfaces with three ends and genus zero; they are classified using their asymptotic necksizes. We work in a class slightl...
متن کاملTrajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control
In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...
متن کاملMinimal Surfaces in R with Dihedral Symmetry
We construct new examples of immersed minimal surfaces with catenoid ends and finite total curvature, of both genus zero and higher genus. In the genus zero case, we classify all such surfaces with at most 2n+1 ends, and with symmetry group the natural Z2 extension of the dihedral group Dn. 1 2 The surfaces are constructed by proving existence of the conjugate surfaces. We extend this method to...
متن کاملA Classification of Braid Types for Periodic Orbits of Diffeomorphisms of Surfaces of Genus One with Topological Entropy Zero
GUASCHI, J . LLIBRE AND R.S . MACKAY We classify the braid types that can occur for finite unions of periodic orbits of diffeomorphisms of surfaces of genus one with zero topological entropy .
متن کاملSpherical Parametrization of Genus-Zero Meshes using the Lagrange-Newton Method
This paper addresses the problem of spherical parametrization, i.e., mapping a given polygonal surface of genus-zero onto a unit sphere. We construct an improved algorithm for parametrization of genus-zero meshes and aim to obtain high-quality surfaces fitting with PHT-splines. This parametrization consists of minimizing discrete harmonic energy subject to spherical constraints and solving the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997